Reliable Diagnosis of Large Linear Arrays—A Bayesian Compressive Sensing Approach

Abstract

An innovative array diagnosis technique based on a compressive-sensing (CS) paradigm is introduced in the case of linear arrangements. Besides detecting the faulty elements, the approach is able to provide the degree of reliability of such an estimation. Starting from the measured samples of the far-field pattern, the array diagnosis problem is formulated in a Bayesian framework and it is successively solved with a fast relevance vector machine (RVM). The arising Bayesian compressive sensing (BCS) approach is numerically validated through a set of representative examples aimed at providing suitable user's guidelines as well as some insights on the method features and potentialities.

Topics

11 Figures and Tables

Download Full PDF Version (Non-Commercial Use)