Effects of transgenic glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application on eubacterial and Pseudomonas communities in the rhizosphere.

Abstract

A containment experiment was carried out in order to evaluate possible shifts in eubacterial and Pseudomonas rhizosphere community structures due to the release of genetically modified Basta-tolerant oilseed rape and the associated herbicide application. Treatments included cultivation of the transgenic plant as well as of the wild-type cultivar in combination with mechanical removal of weeds and the application of the herbicides Basta (active ingredient: glufosinate) and Butisan S (active ingredient: metazachlor). Rhizosphere soil was sampled from early and late flowering plants as well as from senescent plants. A culture-independent approach was chosen to characterize microbial communities based on denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from rhizosphere DNA using eubacterial and Pseudomonas-specific PCR primers. Dominant pseudomonads in the rhizosphere were analyzed by sequence analysis. Whole community and Pseudomonas electrophoresis fingerprints revealed slightly altered microbial communities in the rhizosphere of transgenic plants; however, effects were minor as compared to the plant developmental stage-dependent shifts. Both herbicides caused transient changes in the eubacterial and Pseudomonas population structure, whereas differences due to the genetic modification were still detected at the senescent growth stage. The observed differences between transgenic and wild-type lines were most likely due to unintentionally modified plant characteristics such as altered root exudation.

Topics

    0 Figures and Tables

      Download Full PDF Version (Non-Commercial Use)